Zgłaszanie | Wszystkie zgłoszenia | Najlepsze | Lista |
FR_20_01 - Boisko |
Jaś z kolegami uwielbiają grać w piłkę nożną i grają kiedy tylko mają taką możliwość. Niestety zimą bardzo ciężko się gra na otwartym boisku, więc trzeba wynająć halę w okolicznym centrum sportowym. A to kosztuje.
Za wynajem boiska trzeba zapłacić K bajtalarów. Dodatkowo centrum sportowe obniża cenę wynajmu o Z bajtalarów za każdą kartę sportową okazaną przy wejściu. Do gry potrzeba N zawodników. Wiadomo, że P z nich ma kartę sportową. Dodatkowo chłopcy umówili się, że osoby, które mają kartę sportową będą płacić o X bajtalarów mniej, niż ci bez karty. Policz, ile musi zapłacić każdy z zawodników, żeby pokryć koszt wynajmu boiska.
Wejście
Na wejściu w jednej linii znajdują się kolejne wartości opisane w treści zadania: K (0 < K < 109), Z (0 < Z < 100), N (0 < N < 109), P (0 < P < N), X (0 < X < 100).
Wyjście
Na wyjściu należy wypisać dwie całkowite nieujemne wartości: kwotę bajtalarów, którą musi zapłacić gracz z kartą i kwotę bajtalarów, którą musi zapłacić gracz bez karty. Podane wartości muszą być jak najmniejsze, ale równocześnie muszą gwarantować pokrycie kosztów wynajmu całego boiska.
Uwaga. Może się zdarzyć, że całkowita kwota, którą chłopcy zbiorą będzie trochę większa, niż koszt wynajmu określony przez centrum sportowe.
Przykład
Wejście:280 15 12 5 10Wyjście:
12 22
Wyjaśnienie przykładu
Wynajem boiska kosztuje 280 - 5*15 = 205 bajtalarów. Płacąc po 12 (z kartą) i 22 (bez karty) chłopcy zbiorą: 5*12 + 7*22 = 214. Taka kwota wystarczy, żeby pokryć cenę wynajmu. Jeżeli chłopcy by uzgodnili, że płacą odpowiednio po 11 i 21, to dostaną tylko 5*11 + 7*21 = 202. To zbyt mało, żeby zapłacić za wynajem całego boiska.
Dodane przez: | Grzegorz Spryszyński |
Data dodania: | 2025-03-09 |
Limit czasu wykonania programu: | 1s |
Limit długości kodu źródłowego | 50000B |
Limit pamięci: | 1536MB |
Cluster: | Cube (Intel G860) |
Języki programowania: | All except: GOSU |